Skm's J. M. Patel College of Commerce

Programme: B. Sc. I. T.
Course: Applied Mathematics Topic: Matrices

An arrangements of an element in particular rows and columns is known as matrix
Where elements of matrix are enclosed in parenthesis () or [].
The matrix is denoted by upper case letters.

OR :

An array of dimension $m \times n$ is known as Matrix
where m is number of rows (horizontally lines) and n is number of column (vertical lines)

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad A=\left(\begin{array}{cc}
2 & 7 \\
1 & 3 \\
-5 & 0
\end{array}\right) \quad \mathrm{x}=\left[\begin{array}{ccc}
-2 & 3 & 5 \\
8 & 0 & 4 \\
12 & 52 & 7
\end{array}\right]
$$

$\mathrm{A}=\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1(n-1)} & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2(n-1)} & a_{2 n} \\ a_{31} & a_{32} & \ldots & a_{3(n-1)} & a_{3 n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{(m-1) 1} & a_{(m-1) 2} & \ldots & a_{(m-1)(n-1)} & a_{(m-1) n} \\ a_{m 1} & a_{m 2} & \ldots & a_{m(n-1)} & a_{m n}\end{array}\right]$

Note:

If $\mathrm{m} \neq \mathrm{n}$ then matrix A is Rectangular matrix.
If $m=n$ then matrix A is Square matrix.
$\mathrm{A}=\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1(n-1)} & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2(n-1)} & a_{2 n} \\ a_{31} & a_{32} & \ldots & a_{3(n-1)} & a_{3 n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \mathrm{R}_{1} \text { : first row } \\ a_{(m-1) 1} & a_{(m-1) 2} & \cdots & a_{(m-1)(n-1)} & a_{(m-1) n} \\ a_{m 1} & a_{m 2} & \cdots & a_{m(n-1)} & a_{m n}\end{array}\right] \mathrm{R}_{3}$: third rocond row$A(i, j): a_{i j}$: elemment present at ith row and j th column

Order of matrix is $m \times n$

1 Rectangular Matrix

$$
A=\left(\begin{array}{cc}
2 & 7 \\
1 & 3 \\
-5 & 0
\end{array}\right)
$$

Number of rows= 3
Number of column $=2$
Order of matrix A is 3×2

2 Square Matrix

$$
X=\left[\begin{array}{ccc}
-2 & 3 & 5 \\
8 & 0 & 4 \\
12 & 52 & 7
\end{array}\right]
$$

Number of rows= 3
Number of column $=3$
Order of matrix X is 3×3

A matrix of order $\mathrm{m} \times \mathrm{n}$ is known as Rectangular matrix.
(Number of rows and column are distinct
i.e. $m \neq n$.)
$\mathrm{X}=\left(\begin{array}{lll}p & q & r \\ s & t & u\end{array}\right)$
Number of rows $=2$
Number of column $=3$
Order of matrix X is 2×3

A matrix of order $\mathrm{m} \times \mathrm{n}$ where $\mathbf{m}=\mathbf{n}$ is known as Square matrix.
(Number of rows and number of columns are same)
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Number of rows= 2
Number of column $=2$
Order of matrix A is 2×2

$$
\mathrm{P}=\left(\begin{array}{ll}
5 & 7
\end{array}\right)
$$

Number of rows= 1
Number of column $=2$
Order of matrix P is 1×2

4 Column Matrix

$$
S=\left(\begin{array}{l}
4 \\
5 \\
4
\end{array}\right)
$$

Number of rows= 3
Number of column $=1$
Order of matrix S is 3×1
$\mathrm{Q}=\left[\begin{array}{llll}10 & 25 & -15 & 87\end{array}\right]$
Number of rows $=1$
Number of column $=4$
Order of matrix Q is 1×4

A matrix having only one column irrespective of number of rows is known as Column Matrix.

$$
\mathrm{T}=\left(\begin{array}{c}
3 \\
5 \\
8 \\
0 \\
20
\end{array}\right)
$$

Number of rows $=5$
Number of column $=1$
Order of matrix T is 5×1

$$
\begin{aligned}
& \mathrm{D}=\left(\begin{array}{ll}
0 & 0
\end{array}\right) \\
& \operatorname{Order}(\mathrm{D})=1 \times 2
\end{aligned}
$$

$$
\mathrm{A}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\operatorname{Order}(\mathrm{A})=3 \times 3
$$

A square matrix in which principal diagonal elements are non zero and rest of the elements are zero is known as Diagonal matrix.
$\left[\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d\end{array}\right]$
$\mathrm{D}=\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2\end{array}\right)$

$$
\mathrm{D}=\left(\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

NOTE:

i. Matrix is square
ii. All entries above the diagonal and below the diagonal must be zero ' 0 '.
iii. Principal diagonal entries are non zero.

Where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d where not all zero.

$$
\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right]
$$

A square matrix in which all the entries below the principal diagonal elements are zero is known as Upper Triangular matrix.

$$
\mathrm{D}=\left(\begin{array}{cccc}
4 & 2 & 1 & 0 \\
0 & 3 & 5 & 10 \\
0 & 0 & 0 & 20 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

OR

Let $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ where $\mathrm{i}, \mathrm{j}=1,2,3, \ldots \mathrm{n}$.
A is said to be Upper Triangular Matrix if $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}=0 \forall \boldsymbol{i}>\boldsymbol{j}$

A square matrix in which all the entries above the principal diagonal elements are zero is known as Lower Triangular matrix.

$$
\mathrm{L}=\left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
5 & 3 & 0 & 0 \\
9 & 10 & 0 & 0 \\
30 & 0 & -15 & 2
\end{array}\right)
$$

$$
X=\left[\begin{array}{cccc}
1 & 2 & 3 & -10 \\
0 & 5 & 25 & 0 \\
0 & 0 & 4 & 12 \\
0 & 0 & 0 & 14
\end{array}\right]
$$

OR

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times m}$ where $\mathrm{i}, \mathrm{j}=1,2,3, \ldots \mathrm{~m}$.
A is said to be Lower Triangular Matrix if $\boldsymbol{a}_{i \boldsymbol{j}}=0 \forall \boldsymbol{i}<\boldsymbol{j}$

$$
\mathrm{S}=\left[\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 5
\end{array}\right] \quad, \mathrm{T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{A}=\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right]
$$

Let $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ where $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ and $\mathrm{j}=1,2,3, \ldots . \mathrm{n}$
$\mathrm{A}=\left[\begin{array}{ccccc}a_{11} & 0 & \ldots & 0 & 0 \\ 0 & a_{22} & \ldots & 0 & 0 \\ 0 & 0 & \ldots & 0 & 0 \\ . & . & . & . & . \\ . & . & . & . & . \\ 0 & 0 & \ldots & a_{(n-1)(n-1)} & 0 \\ 0 & 0 & \ldots & 0 & a_{n n}\end{array}\right]$

Note: scalar matrices are
i. Square matrix
ii. Diagonal matrix (i.e. all entries except principal diagonal elements are zero)
iii. An identity matrix is scalar matrix.
(But All scalar matrices are not an identity matrix)

Where $a_{11}=a_{22}=\ldots=a_{(n-1)(n-1)}=a_{n n}$

Singular matrix
A square matrix having determinant value as Zero is known as Singular Matrix.

OR

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times m}$ where $\mathrm{i}, \mathrm{j}=1,2,3, \ldots \mathrm{~m}$.
if $\operatorname{det}(A)=0$ then A is said to be Singular matrix.

$$
\begin{aligned}
& \mathrm{D}=\left(\begin{array}{ll}
\mathbf{6} & \mathbf{3 0} \\
\mathbf{4} & \mathbf{2 0}
\end{array}\right) \\
& \operatorname{Det}(\mathrm{D})=6^{*} 20-30^{*} 4 \\
&=120-120 \\
&=0
\end{aligned}
$$

A square matrix having determinant value as Non-Zero number is known as Non-Singular Matrix.

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times m}$ where $\mathrm{i}, \mathrm{j}=1,2,3, \ldots \mathrm{~m}$.
if $\operatorname{det}(\mathrm{A}) \neq 0$ then A is said to be Non-Singular matrix.

$$
X=\left[\begin{array}{cc}
-2 & 3 \\
8 & 0
\end{array}\right] \quad \begin{aligned}
|X| & =(-2) * 0-3 * 8 \\
& =0-24 \\
& =-24
\end{aligned}
$$

A transpose of a matrix is obtained by interchanging row into column (or column into row) of a matrix.

It is denoted by A^{\prime} or A^{T} or A^{t}

$$
A=\left(\begin{array}{cc}
2 & 7 \\
1 & 3 \\
-5 & 0
\end{array}\right)_{3 \times 2} \quad \begin{gathered}
\text { Transpose is obtained } \\
\text { After interchanging row into column }
\end{gathered} A^{\prime}=\left(\begin{array}{ccc}
2 & 1 & -5 \\
7 & 3 & 0
\end{array}\right)_{2 \times 3}
$$

$$
\mathrm{x}=\left[\begin{array}{cc}
-2 & 3 \\
8 & 0
\end{array}\right]_{2 \times 2} \quad \text { Afranspose is interchanging row into column } \quad \mathrm{X}^{\prime}=\left[\begin{array}{cc}
-2 & 8 \\
3 & 0
\end{array}\right]_{2 \times 2}
$$

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ where $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ and $\mathrm{j}=1,2,3, \ldots \mathrm{n}$
13 Symmetric Matrix
A is said to be Symmetric matrix if $a_{i j}=a_{j i} \forall \mathrm{i}, \mathrm{j}$
i. e. if $\mathrm{A}=\mathrm{A}^{\prime}$ the A is symmetric matrix
$A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ then $A^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
$X=\left[\begin{array}{ccc}3 & 2 & -1 \\ 2 & 4 & 7 \\ -1 & 7 & -5\end{array}\right]$ then $X^{\prime}=\left[\begin{array}{ccc}3 & 2 & -1 \\ 2 & 4 & 7 \\ -1 & 7 & -5\end{array}\right]$
$A=A^{\prime}$, hence A is symmetric matrix.

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ where $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ and $\mathrm{j}=1,2,3, \ldots \mathrm{n}$
A is said to be Skew-Symmetric matrix if $a_{i j}=-a_{j i} \forall \mathrm{i}, \mathrm{j}$
i. e. if $\mathrm{A}=-\mathrm{A}^{\prime}$ the A is Skew-symmetric matrix

$$
\mathrm{P}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right] \text { then } \mathrm{P}^{\prime}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right] \quad-\mathrm{P}^{\prime}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]
$$

Here $\mathbf{P}=-\mathbf{P}^{\prime}$

Therefore P is skew-symmetric matrix.

If $\mathrm{P}=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$ then $\mathrm{P}^{\prime}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
$\mathbf{P} * \mathbf{P}^{\prime}=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right] *\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2}(\theta)+\sin ^{2}(\theta) & -\cos (\theta) \sin (\theta)+\sin (\theta) \cos (\theta) \\ -\sin (\theta) \cos (\theta)+\cos (\theta) \sin (\theta) & \sin ^{2}(\theta)+\cos ^{2}(\theta)\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\mathrm{I}$
Hence P is orthogonal matrix.
Other example $\left(\frac{1}{9}\right)\left(\begin{array}{ccc}2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2\end{array}\right)$

A matrix A is said to be Hermitian matrix if $A=A^{\theta}$ where A^{θ} is transpose of conjugate of matrix A .

Let $\mathrm{A}=\left[\begin{array}{cc}1 & 1+i \\ 1-i & 1\end{array}\right]$
Conjugate of $\mathrm{A}=\bar{A}=\left[\begin{array}{cc}1 & 1-i \\ 1+i & 1\end{array}\right]$
Transpose of conjugate of $\mathrm{A}=\bar{A}^{\prime}=\left[\begin{array}{cc}1 & 1+i \\ 1-i & 1\end{array}\right]$

$$
A^{\theta}=\bar{A}^{\prime}=\left[\begin{array}{cc}
1 & 1+i \\
1-i & 1
\end{array}\right]
$$

Here $\quad \mathrm{A}=A^{\theta}$
Therefore A is Hermitian matrix.

Let $\mathrm{A}=\left[\begin{array}{cc}i & -2 \\ 2 & 0\end{array}\right]$
Conjugate of $\mathrm{A}=\bar{A}=\left[\begin{array}{cc}-i & -2 \\ 2 & 0\end{array}\right]$
Transpose of conjugate of $\mathrm{A}=\bar{A}^{\prime}=\left[\begin{array}{ll}-i & 2 \\ -2 & 0\end{array}\right]$

$$
\begin{aligned}
& A^{\theta}=\bar{A}^{\prime}=\left[\begin{array}{ll}
-i & 2 \\
-2 & 0
\end{array}\right] \\
& A^{\theta}=-\left[\begin{array}{cc}
i & -2 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

Here

$$
\mathrm{A}=-A^{\theta}
$$

Therefore A is Skew- Hermitian matrix.

Let $X=\left(\frac{1}{2}\right)\left[\begin{array}{ll}1+i & 1-i \\ 1-i & 1+i\end{array}\right]$
Then $X^{\theta}=\left(\frac{1}{2}\right)\left[\begin{array}{ll}1-i & 1+i \\ 1+i & 1-i\end{array}\right]$
$X^{*} X^{\theta}=\left(\frac{1}{2}\right)\left[\begin{array}{ll}1+i & 1-i \\ 1-i & 1+i\end{array}\right] *\left(\frac{1}{2}\right)\left[\begin{array}{ll}1-i & 1+i \\ 1+i & 1-i\end{array}\right]$
$=(1 / 4)\left[\begin{array}{cc}(1+i) *(1-i)+(1-i) *(1+i) & (1+i)^{2}-(1-i)^{2} \\ (1-i)^{2}-(1+i)^{2} & (1-i) *(1+i)+(1+i) *(1-i)\end{array}\right]$
$=(1 / 4)\left[\begin{array}{cc}1^{2}-i^{2}+1^{2}-i^{2} & 1+2 i+i^{2}+1-2 i+i^{2} \\ 1-2 i+i^{2}+1+2 i+i^{2} & 1^{2}-i^{2}+1^{2}-i^{2}\end{array}\right]$
$=(1 / 4)\left[\begin{array}{cc}1-(-1)+1-(-1) & 2+2 i^{2} \\ 2+2 i^{2} & 1-(-1)+1-(-1)\end{array}\right]$
$=(1 / 4)\left[\begin{array}{cc}4 & 2-2 \\ 2-2 & 4\end{array}\right]$
$=(1 / 4)\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

